Sonic Hedgehog induces proliferation of committed skeletal muscle cells in the chick limb.
نویسندگان
چکیده
Myogenic Regulatory Factors (MRFs) are a family of transcription factors whose expression in a cell reflects the commitment of this cell to a myogenic fate before any cytological sign of muscle differentiation is detectable. Myogenic cells in limb skeletal muscles originate from the lateral half of the somites. Cells that migrate away from the lateral part of the somites to the limb bud do not initially express any member of the MRF family. Expression of MRFs in the muscle precursor cells starts after the migration process is completed. The extracellular signals involved in activating the myogenic programme in muscle precursor cells in the limb in vivo are not known. We wished to investigate whether Sonic Hedgehog (SHH) expressed in the posterior part of the limb bud could be involved in differentiation of the muscle precursor cells in the limb. We found that retrovirally overexpressed SHH in the limb bud induced the extension of the expression domain of the Pax-3 gene, then that of the MyoD gene and finally that of the myosin protein. This led to an hypertrophy of the muscles in vivo. Addition of SHH to primary cultures of myoblasts resulted in an increase in the proportion of myoblasts that incorporate bromodeoxyuridine, resulting in an increase of myotube number. These data show that SHH is able to activate myogenesis in vivo and in vitro in already committed myoblasts and suggest that the stimulation of the myogenic programme by SHH involves activation of cell proliferation.
منابع مشابه
Sonic Hedgehog (SHH) specifies muscle pattern at tissue and cellular chick level, in the chick limb bud
Development of the musculature in chick limbs involves tissue and cellular patterning. Patterning at the tissue level leads to the precise arrangement of specific muscles; at the cellular level patterning gives rise to the fibre type diversity in muscles. Although the data suggests that the information controlling muscle patterning is localised within the limb mesenchyme and not in the somitic ...
متن کامل21-P001 Developmental regulation and tissue patterning by Shh in vertebrate limbs
During limb development, Sonic Hedgehog (Shh) is expressed in the posterior limb bud and is critical for the antero-posterio (AP) patterning of the limb. Gain or loss of Shh function affects patterning of limb skeletal elements, muscle, and tendons. However, it remains unknown whether Shh signalling regulates the patterning and development of these tissues in a cell-autonomous and non-cell-auto...
متن کاملHensen's node from vitamin A-deficient quail embryo induces chick limb bud duplication and retains its normal asymmetric expression of Sonic hedgehog (Shh).
Both Hensen's node, the organizer center in chick embryo, and exogenous retinoic acid are known to induce limb duplication when grafted or applied to the host chick limb bud. Retinoic acid is known to be present in the node and has been proposed as the putative morphogen for chick limb development. Here, we report that Hensen's node from vitamin A-deficient quail embryo induces limb duplication...
متن کاملSonic hedgehog is a survival factor for hypaxial muscles during mouse development.
Sonic hedgehog (Shh) has been proposed to function as an inductive and trophic signal that controls development of epaxial musculature in vertebrate embryos. In contrast, development of hypaxial muscles was assumed to occur independently of Shh. We here show that formation of limb muscles was severely affected in two different mouse strains with inactivating mutations of the Shh gene. The limb ...
متن کاملAutonomous and nonautonomous roles of Hedgehog signaling in regulating limb muscle formation.
Muscle progenitor cells migrate from the lateral somites into the developing vertebrate limb, where they undergo patterning and differentiation in response to local signals. Sonic hedgehog (Shh) is a secreted molecule made in the posterior limb bud that affects patterning and development of multiple tissues, including skeletal muscles. However, the cell-autonomous and non-cell-autonomous functi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 125 3 شماره
صفحات -
تاریخ انتشار 1998